版权说明 操作指南
首页 > 成果 > 成果详情

Object-based rice mapping using time-series and phenological data

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Meng;Lin, Hui*
通讯作者:
Lin, Hui
作者机构:
[Zhang, Meng; Lin, Hui] Key Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China.
[Zhang, Meng; Lin, Hui] Cent South Univ Forestry & Technol, Res Ctr Forest Remote Sensing & Informat Engn, Changsha 410004, Hunan, Peoples R China.
[Zhang, Meng] Cent S Univ, Ctr Geomat & Reg Sustainable Dev Res, Changsha 410083, Hunan, Peoples R China.
通讯机构:
[Lin, Hui] K
Key Lab Forestry Remote Sensing Based Big Data &, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Object-based;Phenology;Remote sensing;Rice;STARFM;Time series
期刊:
Advances in Space Research
ISSN:
0273-1177
年:
2019
卷:
63
期:
1
页码:
190-202
基金类别:
The proposed method has three steps. Firstly, smooth the MODIS-NDVI time-series data with the Savitzky-Golay (S-G) filter of TIMESAT (Jönsson and Eklundh, 2004). Derive phenological indices from the fitted MODIS-NDVI time-series data using a dynamic-threshold method via MATLAB. Resample time series MODIS-NDVI and phonological indices to 30 m resolution. Then, determine the critical stages of rice growth based on the MODIS-NDVI time-series data, phenological indices, and the observed
机构署名:
本校为其他机构
院系归属:
林学院
摘要:
Remote sensing techniques are often used in mapping rice, but high quality time-series remote sensing data are difficult to obtain due to the cloudy weather of rice growing areas and long satellite revisit interval. As such, rice mapping is usually based on mono-temporal Landsat TM/ETM+ data, which have large uncertainties due to the spectral similarity of different vegetation types. Moreover, conventional pixel-based classification method is unable to meet the required accuracy for rice mapping. Therefore, this study proposes a new strategy fo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com