版权说明 操作指南
首页 > 成果 > 成果详情

Focus and learn: boosting deep multi-view clustering via hard instance awareness

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wenlong Liu;Jiaohua Qin*
通讯作者:
Jiaohua Qin
作者机构:
[Wenlong Liu] Bangor College, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
[Jiaohua Qin] School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
通讯机构:
[Jiaohua Qin] S
School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
语种:
英文
期刊:
Information Fusion
ISSN:
1566-2535
年:
2026
卷:
127
页码:
103724
机构署名:
本校为第一且通讯机构
院系归属:
班戈学院
摘要:
Deep contrastive multi-view clustering aims to use contrastive mechanisms to exploit the complementary information from multiple features, which has attracted increasing attention in recent years. However, we observe that most contrastive multi-view clustering methods neglect the false sample pairs caused by hard samples during the process of constructing contrastive sample pairs, including negative samples exhibit high similarity and positive samples exhibit low similarity. To address this problems, we propose a novel deep contrastive multi-view clustering network for hard sample mining, term...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com