版权说明 操作指南
首页 > 成果 > 成果详情

Innovative Framework for Historical Architectural Recognition in China: Integrating Swin Transformer and Global Channel-Spatial Attention Mechanism

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Jiade;Ying, Yang;Tan, Yigao;Liu, Zhuliang
通讯作者:
Ying, Y
作者机构:
[Wu, Jiade; Tan, Yigao] Cent South Univ, Sch Architecture & Art, Changsha 410075, Peoples R China.
[Ying, Yang; Liu, Zhuliang; Tan, Yigao; Ying, Y] China Construct Fifth Engn Div Co Ltd, Changsha 410000, Peoples R China.
[Ying, Yang; Ying, Y] Changsha Univ Sci & Technol, Coll Civil Engn & Architecture, Changsha 410114, Peoples R China.
[Liu, Zhuliang] Cent South Univ Forestry & Technol, Coll Landscape & Architecture, Changsha 410004, Peoples R China.
通讯机构:
[Ying, Y ] C
China Construct Fifth Engn Div Co Ltd, Changsha 410000, Peoples R China.
Changsha Univ Sci & Technol, Coll Civil Engn & Architecture, Changsha 410114, Peoples R China.
语种:
英文
关键词:
historical architecture;deep learning;model interpretability;attention mechanism;cultural heritage preservation
期刊:
Buildings
ISSN:
2075-5309
年:
2025
卷:
15
期:
2
基金类别:
National Key Research and Development Program of China [2024YFD1600405]; Project "Research on Key Technologies for Integrated Digital Contextual Architecture with Design-Build Synergy in Multidimensional Positive BIM" [cscec5b-2023-01]; Project "Coupling Research and Application Demonstration of Zero-Energy Building Construction and Carbon-Free Operation Technology Based on Recycled Materials" [CSCEC-2023-Z-01]
机构署名:
本校为其他机构
院系归属:
风景园林学院
摘要:
The digital recognition and preservation of historical architectural heritage has become a critical challenge in cultural inheritance and sustainable urban development. While deep learning methods show promise in architectural classification, existing models often struggle to achieve ideal results due to the complexity and uniqueness of historical buildings, particularly the limited data availability in remote areas. Focusing on the study of Chinese historical architecture, this research proposes an innovative architectural recognition framework that integrates the Swin Transformer backbone wi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com