版权说明 操作指南
首页 > 成果 > 成果详情

DEJKMDR: miRNA-disease association prediction method based on graph convolutional network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Gao, Shiyuan;Kuang, Zhufang;Duan, Tao;Deng, Lei
通讯作者:
Kuang, ZF
作者机构:
[Duan, Tao; Kuang, Zhufang; Gao, Shiyuan] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha, Peoples R China.
[Deng, Lei] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China.
通讯机构:
[Kuang, ZF ] C
Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha, Peoples R China.
语种:
英文
关键词:
DropEdge;graph convolutional network;JK-net;miRNA;miRNA-disease
期刊:
Frontiers in Medicine
ISSN:
2296-858X
年:
2023
卷:
10
页码:
1234050
基金类别:
This work was supported in part by the National Natural Science Foundation of China under Grants Nos. 62072477, 61309027, 61702562 and 61702561, the Hunan Provincial Natural Science Foundation of China under Grants No.2018JJ3888, the Hunan Key Laboratory of Intelligent Logistics Technology 2019TP1015.
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Numerous studies have shown that miRNAs play a crucial role in the investigation of complex human diseases. Identifying the connection between miRNAs and diseases is crucial for advancing the treatment of complex diseases. However, traditional methods are frequently constrained by the small sample size and high cost, so computational simulations are urgently required to rapidly and accurately forecast the potential correlation between miRNA and disease. In this paper, the DEJKMDR, a graph convolutional network (GCN)-based miRNA-disease association prediction model is proposed. The novelty of t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com