Differential evolution (DE) is a competitive algorithm for constrained optimization problems (COPs). In this study, in order to improve the efficiency and accuracy of the DE for high dimensional problems, an adaptive surrogate assisted DE algorithm, called ASA-DE is suggested. In the ASA, several kinds of surrogate modeling techniques are integrated. Furthermore, to avoid violate the constraints and obtain better solution simultaneously, adaptive strategies for population size and mutation are also suggested in this study. The suggested adaptiv...