版权说明 操作指南
首页 > 成果 > 成果详情

基于高光谱技术的籼稻霉变程度鉴别模型构建与优化

认领
导出
下载 Link by 中国知网学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
论文标题(英文):
Establishment and Optimization of Identification Model for the Degree of Moldy Indica Rice Based on Hyperspectral Technology
作者:
郑立章;龚中良;文韬;董帅;桑孟祥
通讯作者:
Wen, T.
作者机构:
[郑立章; 龚中良; 董帅; 桑孟祥] School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
Key Laboratory of Key Technology for South Agricultural Machinery and Equipment, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
[文韬] School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China<&wdkj&>Key Laboratory of Key Technology for South Agricultural Machinery and Equipment, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
通讯机构:
School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, China
语种:
中文
关键词:
高光谱技术;霉变籼稻;鉴别;簇类独立软模式法;连续投影算法
关键词(英文):
Hyperspectral technology;Identification;Moldy indica rice;Soft independent modeling of class analogy;Successive projections algorithm
期刊:
中国粮油学报
ISSN:
1003-0174
年:
2017
卷:
32
期:
11
页码:
151-157
基金类别:
31401281:国家自然科学基金 2016NK2151:湖南省科技计划重点项目 14JJ3115:湖南省自然科学基金 2014207:湖南省高等学校科技创新团队支持计划
机构署名:
本校为第一且通讯机构
院系归属:
机电工程学院
摘要:
为解决快速无损鉴别籼稻霉变程度问题,利用高光谱技术采集200份霉变样本可见/近红外光谱信息,随机选取155份样本作为校正集,剩余45份作为验证集,根据预测浓度残差检验标准对校正集中异常样本进行剔除。以新校正集建立主成分线性判别分析(PCA-LDA)和簇类独立软模式法(SIMCA)模型,选用正确识别率为指标,优选最佳鉴别模型。并采用连续投影算法(SPA)提取特征波长,优化优选的最佳模型构建速度。研究结果表明,PCA-LDA对所有样本的误判总数为15,正确识别率为92.50%;SIMCA和SPASIMCA对所有样本的未能正确识别总数分别为6、2,正确识别率分别为97.00%、99.00%,并且经SPA筛选的变量数为20,仅占原始变...
摘要(英文):
In order to solve the problem of fast and nondestructive identification of moldy indica rice,the hyperspectral technique was used to collect the visible/near infrared spectroscopy of 200 moldy paddies,155 samples were randomly chosen as calibration set,and 45 samples were chosen as validation set.According to the criterion of predicted concentration residual,the outlier samples of calibration set were eliminated.Then,the principal component analysis combined with linear discriminate analysis(PCA-LDA)and soft independent modeling of class analog...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com