版权说明 操作指南
首页 > 成果 > 成果详情

An intelligent system for low-pressure die-cast process parameters optimization

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Liqiang;Wang, Rongji*
通讯作者:
Wang, Rongji
作者机构:
[Zhang, Liqiang; Wang, Rongji] Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Hunan, Peoples R China.
[Zhang, Liqiang] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China.
通讯机构:
[Wang, Rongji] C
Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
LPDC;Process parameters;Artificial neural network;Genetic algorithm;Numerical simulation
期刊:
International Journal of Advanced Manufacturing Technology
ISSN:
0268-3768
年:
2013
卷:
65
期:
1-4
页码:
517-524
基金类别:
Open Research Fund Program of the State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body [31115009]; Initial Scientific Research foundation of Central South University of Forestry & Technology for the introduction of talents [104-0206]; Youth Scientific Research Foundation of Central South University of Forestry Technology
机构署名:
本校为第一且通讯机构
院系归属:
机电工程学院
摘要:
Low-pressure die-cast (LPDC) is widely used in manufacturing thin-walled aluminum alloy products. Since the quality of LPDC parts are mostly influenced by process conditions, how to determine the optimum process conditions becomes the key to improve the part quality. In this paper, a combining artificial neural network and genetic algorithm (ANN/GA) method is proposed to optimize the LPDC process. In this method, considering the more complicated preparation process of thin-walled casting, an ANN model combining learning vector quantization and back-propagation (BP) algorithm is proposed to map...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com