Low-pressure die-cast (LPDC) is widely used in manufacturing thin-walled aluminum alloy products. Since the quality of LPDC parts are mostly influenced by process conditions, how to determine the optimum process conditions becomes the key to improve the part quality. In this paper, a combining artificial neural network and genetic algorithm (ANN/GA) method is proposed to optimize the LPDC process. In this method, considering the more complicated preparation process of thin-walled casting, an ANN model combining learning vector quantization and back-propagation (BP) algorithm is proposed to map...