版权说明 操作指南
首页 > 成果 > 成果详情

GRAPE: graph-regularized protein language modeling unlocks TCR-epitope binding specificity

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fu, Xiangzheng;Peng, Li;Chen, Haowen;Rong, Mingqiang;Chen, Yifan;...
通讯作者:
Chen, YF;Lu, AP
作者机构:
[Chen, Yifan; Fu, Xiangzheng] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Inst Artificial Intelligence Applicat, 498 Shaoshan South Rd,Tianxin Dist, Changsha 410004, Hunan, Peoples R China.
[Lu, Aiping; Fu, Xiangzheng] Hong Kong Baptist Univ, Sch Chinese Med, Kowloon Tong, Kowloon, 15 Baptist Univ Rd, Hong Kong 999077, Peoples R China.
[Chen, Haowen] Hunan Univ, Coll Sci & Elect Engn, 2 Lushan South Rd, Changsha 410082, Hunan, Peoples R China.
[Peng, Li] Hunan Univ Sci & Technol, Coll Comp Sci & Engn, 1 Taoyuan Rd, Xiangtan 411201, Hunan, Peoples R China.
[Rong, Mingqiang] Hunan Normal Univ, Coll Life Sci, Natl & Local Joint Engn Lab Anim Peptide Drug Dev, 36 Lushan Rd, Changsha 410081, Hunan, Peoples R China.
通讯机构:
[Chen, YF ] C
[Lu, AP ] H
Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Inst Artificial Intelligence Applicat, 498 Shaoshan South Rd,Tianxin Dist, Changsha 410004, Hunan, Peoples R China.
Hong Kong Baptist Univ, Sch Chinese Med, Kowloon Tong, Kowloon, 15 Baptist Univ Rd, Hong Kong 999077, Peoples R China.
Changsha Med Univ, Sch Informat Engn, 1501 Leifeng Rd, Changsha 410219, Peoples R China.
语种:
英文
关键词:
AUC-maximization;TCR-epitope binding;graph regularization;protein language models
期刊:
BRIEFINGS IN BIOINFORMATICS
ISSN:
1467-5463
年:
2025
卷:
26
期:
5
基金类别:
National Natural Science Foundation of China [62372158, 62402533, 62572178, 62472165]; Natural Science Foundation of Hunan Province [2025JJ60400]; Educational Commission of Hunan Province [23B0237]
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
T-cell receptor (TCR)-epitope binding prediction is critical for immunotherapies but remains challenged by sparse interaction networks and severe class imbalance in training data. Current graph neural network (GNN) approaches for predicting TCR-epitope binding (TEB) fail to address two key limitations: over-smoothing during message propagation in sparse TCR-epitope graphs and biased predictions toward dominant epitope-TCR pairs. Here, we present GRAPE (Graph-Regularized Attentive Protein Embeddings), a framework unifying spectral graph regularization and imbalance-aware learning. GRAPE first l...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com