版权说明 操作指南
首页 > 成果 > 成果详情

Parameter Optimization of Electrohydrodynamic Inkjet Printing Based on Numerical Simulation and Machine Learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xu, Da;Huang, Meicong;Ye, Linyu;Zeng, Cheng;Ke, Shanrong;...
通讯作者:
Guo, ZQ
作者机构:
[Ke, Shanrong; Xu, Da; Ye, Linyu; Guo, Ziquan; Guo, ZQ; Chen, Zhong; Huang, Meicong; Zeng, Cheng] Xiamen Univ, Natl Model Microelect Coll, Sch Elect Sci & Engn, Dept Elect Sci, Xiamen 361005, Fujian, Peoples R China.
[Chai, Yaling] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China.
通讯机构:
[Guo, ZQ ] X
Xiamen Univ, Natl Model Microelect Coll, Sch Elect Sci & Engn, Dept Elect Sci, Xiamen 361005, Fujian, Peoples R China.
语种:
英文
关键词:
electrohydrodynamic inkjet printing;numerical simulation;machine learning;parameter optimization;genetic algorithm
期刊:
Engineering Research Express
ISSN:
2631-8695
年:
2025
卷:
7
期:
2
基金类别:
Natural Science Foundation of Fujian Province [2019J05022]
机构署名:
本校为其他机构
院系归属:
材料科学与工程学院
摘要:
Electrohydrodynamic (EHD) inkjet printing has gained widespread attention in electronics, biomedicine, and materials science for its exceptional resolution and printing versatility. However, the droplet formation process is governed by complex interactions between driving waveform parameters and fluid properties, making traditional trial-and-error optimization inefficient. To address this, a hybrid approach combining numerical simulation, machine learning regression, and genetic algorithm optimization is proposed to achieve precise control of droplet diameter. A multiphysics numerical model is...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com