版权说明 操作指南
首页 > 成果 > 成果详情

PPIDM: Privacy-Preserving Inference for Diffusion Model in the Cloud

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Zhangdong;Liu, Zhihuang;Luo, Yuanjing;Zhou, Tongqing*;Qin, Jiaohua;...
通讯作者:
Zhou, Tongqing;Cai, ZP
作者机构:
[Zhou, Tongqing; Wang, Zhangdong; Liu, Zhihuang; Cai, Zhiping; Luo, Yuanjing] Natl Univ Def Technol, Coll Comp Sci & Technol, Changsha 410073, Peoples R China.
[Qin, Jiaohua; Luo, Yuanjing] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha, Peoples R China.
通讯机构:
[Zhou, TQ; Cai, ZP ] N
Natl Univ Def Technol, Coll Comp Sci & Technol, Changsha 410073, Peoples R China.
语种:
英文
关键词:
Privacy-preserving;diffusion model;
cloud environments;
cloud environments;generate artistic images;generate artistic images
期刊:
IEEE Transactions on Circuits and Systems for Video Technology
ISSN:
1051-8215
年:
2025
卷:
35
期:
9
页码:
8849-8863
基金类别:
National Natural Science Foundation of China [62172155, 62472434, 62102425]; National Key Research and Development Program of China [2022YFF1203001]; Science and Technology Innovation Program of Hunan Province [2022RC3061, 2023RC3027]
机构署名:
本校为其他机构
院系归属:
计算机与信息工程学院
摘要:
Cloud environments enhance diffusion model efficiency but introduce privacy risks, including intellectual property theft and data breaches. As AI-generated images gain recognition as copyright-protected works, ensuring their security and intellectual property protection in cloud environments has become a pressing challenge. This paper addresses privacy protection in diffusion model inference under cloud environments, identifying two key characteristics-denoising-encryption antagonism and stepwise generative nature-that create challenges such as incompatibility with traditional encryption, inco...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com