版权说明 操作指南
首页 > 成果 > 成果详情

An optimized and precise road crack segmentation network in complex scenarios

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Gang;He, Mingfang;Liu, Genhua;Li, Liujun;Liu, Exian*;...
通讯作者:
Liu, Exian;Zhou, GX
作者机构:
[Liu, Genhua; Liu, Exian; Zhou, Guoxiong; Wang, Gang; He, Mingfang] Cent South Univ Forestry Sci & Technol, Sch Mech & Elect Engn, Changsha 410004, Peoples R China.
[Li, Liujun] Univ Idaho, Dept Soil & Water Syst, Moscow, ID USA.
通讯机构:
[Liu, EX; Zhou, GX ] C
Cent South Univ Forestry Sci & Technol, Sch Mech & Elect Engn, Changsha 410004, Peoples R China.
语种:
英文
期刊:
Computer-Aided Civil and Infrastructure Engineering
ISSN:
1093-9687
年:
2025
基金类别:
[Correction added on March 5, 2025, after first online publication: The author's first affiliation and Correspondence section have been updated.]
机构署名:
本校为第一且通讯机构
院系归属:
机电工程学院
摘要:
Road cracks pose a serious threat to the stability of road structures and traffic safety. Therefore, this paper proposes an optimized accurate road crack segmentation network called MBGBNet, which can solve the problems of complex background, tiny cracks, and irregular edges in road segmentation. First, multi-scale domain feature aggregation is proposed to address the interference of complex background. Second, bidirectional embedding fusion adaptive attention is proposed to capture the features of tiny cracks, and finally, Gaussian weighted edge segmentation algorithm is proposed to ensure th...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com