版权说明 操作指南
首页 > 成果 > 成果详情

BC-DUnet-based segmentation of fine cracks in bridges under a complex background

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Liu, Tao;Zhang, Liangji;Zhou, Guoxiong;Cai, Weiwei;Cai, Chuang;...
作者机构:
[Liu, Tao] Cent South Univ Forestry & Technol, Coll Civil Engn, Changsha, Hunan, Peoples R China.
[Zhang, Liangji; Cai, Chuang; Zhou, Guoxiong; Cai, Weiwei] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha, Hunan, Peoples R China.
[Li, Liujun] Univ Missouri, Dept Civil Architectural & Environm Engn, Rolla, MO 65401 USA.
语种:
英文
期刊:
PLOS ONE
ISSN:
1932-6203
年:
2022
卷:
17
期:
3
页码:
e0265258
基金类别:
Changsha Municipal Science Foundation#&#&#kq2014160 National Natural Science Foundation of Hunan Province#&#&#2020JJ4948 Department of Education Hunan Province#&#&#19A511 National Natural Science Foundation in China#&#&#61703441
机构署名:
本校为第一机构
院系归属:
土木工程学院
计算机与信息工程学院
摘要:
Crack is the external expression form of potential safety risks in bridge construction. Currently, automatic detection and segmentation of bridge cracks remains the top priority of civil engineers. With the development of image segmentation techniques based on convolutional neural networks, new opportunities emerge in bridge crack detection. Traditional bridge crack detection methods are vulnerable to complex background and small cracks, which is difficult to achieve effective segmentation. This study presents a bridge crack segmentation method based on a densely connected U-Net network (BC-DU...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com