版权说明 操作指南
首页 > 成果 > 成果详情

Research on Dunhuang Style Line Drawing Generation Based on Deep Learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yiou Zhang;Xiangquan Gui;Quan Song
作者机构:
[Yiou Zhang; Xiangquan Gui] School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu, China
[Quan Song] Swan College, Central South University of Forestry and Technology, Changsha, Hunan, China
语种:
英文
关键词:
Dunhuang murals;Line drawing generation;Style transfer;Generative adversarial networks;Deep learning
年:
2025
页码:
01-04
会议名称:
2025 6th International Conference on Computer Engineering and Application (ICCEA)
会议论文集名称:
2025 6th International Conference on Computer Engineering and Application (ICCEA)
会议时间:
25 April 2025
会议地点:
Hangzhou, China
出版者:
IEEE
ISBN:
979-8-3315-4331-0
机构署名:
本校为其他机构
院系归属:
涉外学院
摘要:
Dunhuang murals, as invaluable cultural heritage, hold distinct artistic significance. Transforming them into line drawings aids in preservation and creative reuse. However, current deep learning-based style transfer methods often suffer from blurred lines, style inconsistency, and poor structural fidelity. To overcome these challenges, this paper proposes DMLT-GAN, a GAN-based model integrating multi-level convolution, asymmetric cycle consistency loss, and gradient loss to enhance the stylistic fidelity and line clarity. Experiments demonstrate that DMLT-GAN achieves superior visual quality ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com