版权说明 操作指南
首页 > 成果 > 成果详情

Facial expression recognition of intercepted video sequences based on feature point movement trend and feature block texture variation

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yi, Jizheng*;Chen, Aibin*;Cai, Zixing;Sima, Yi;Zhou, Mengna;...
通讯作者:
Yi, Jizheng;Chen, Aibin
作者机构:
[Yi, Jizheng; Zhou, Mengna; Sima, Yi; Yi, JZ; Chen, Aibin] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
[Yi, Jizheng; Wu, Xingyu] Univ Penn, Sch Med, Med Image Proc Grp, Philadelphia, PA 19104 USA.
[Cai, Zixing] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China.
通讯机构:
[Yi, JZ; Chen, AB] C
Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Facial expression recognition (FER);Facial expression sequence interception (FESI);Feature block texture difference (FBTD);Slope set
期刊:
Applied Soft Computing
ISSN:
1568-4946
年:
2019
卷:
82
页码:
105540
基金类别:
The authors would like to thank all editors and the anonymous reviewers for their valuable suggestions. This paper has utilized BHU facial expression database and MMI facial expression database. The authors would like to thank the providers of these databases. This work was supported in part by the National Natural Science Foundation of China (Grant no. 61602528 and Grant no. 61772561), the Hunan Provincial Natural Science Foundation of China (Grant no. 2017JJ3527), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant no. 16B275), the Grant of China Scholarship Council (CSC no. 201808430002), and the Research Foundation for Advanced Talents of Central South University of Forestry and Technology, China (Grant no. 2015YJ013).
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Facial Expression Recognition (FER) is an important subject of human–computer interaction and has long been a research area of great interest. Accurate Facial Expression Sequence Interception (FESI) and discriminative expression feature extraction are two enormous challenges for the video-based FER. This paper proposes a framework of FER for the intercepted video sequences by using feature point movement trend and feature block texture variation. Firstly, the feature points are marked by Active Appearance Model (AAM) and the most representativ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com