版权说明 操作指南
首页 > 成果 > 成果详情

SSER: Semi-Supervised Emotion Recognition Based on Triplet Loss and Pseudo Label

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Pan, Lili;Shao, Weizhi;Xiong, Siyu;Lei, Qianhui;Huang, Shiqi;...
通讯作者:
Shao, WZ
作者机构:
[Pan, Lili; Shao, Weizhi; Xiong, Siyu; Shao, WZ; Lei, Qianhui] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha 410114, Peoples R China.
[Beckman, Eric; Huang, Shiqi] Florida Int Univ, Chaplin Sch Hospitality & Tourism Management, N Miami, FL 33181 USA.
[Hu, Qinghua] Tianjin Univ, Sch Artificial Intelligence, Tianjin 300072, Peoples R China.
通讯机构:
[Shao, WZ ] C
Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Chemical activation;Deep learning;Entropy;Image analysis;Image enhancement;Speech recognition;Activation matrices;Continuous domain;Discrete domains;Emotion recognition;Image similarity;Pseudo label;Recognition methods;Semi-supervised;Semi-supervised learning;Triplet loss;Emotion Recognition
期刊:
Knowledge-Based Systems
ISSN:
0950-7051
年:
2024
卷:
292
页码:
111595
基金类别:
This scientific work is supported by General Program of Natural Science Foundation of Hunan Province, China (2021JJ31164), Key Program of Science Research Foundation of Education Department of Hunan Province, China (22A0195), Teaching Reform Research Program of Education Department of Hunan Province, China (HNJG-20230471).
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Recently, emotion recognition from facial expressions has achieved unprecedented accuracy with the development of deep learning. Despite this progress, most existing emotion recognition methods are supervised and thus require extensive annotation. This issue is particularly pronounced in continuous domain datasets where annotation costs are very high. Furthermore, discrete domain datasets containing specific poses are too uniform to reflect complex and actual emotions. Existing methods that employ classification loss pay little attention to ima...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com