版权说明 操作指南
首页 > 成果 > 成果详情

Machine learning prediction of bio-polyol yields and hydroxyl values from acid-catalyzed liquefaction of lignocellulosic biomass

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Songlin;Zhao, Jinping;Li, Chengjun;Li, Xianjun;Xu, Zhaoyang;...
通讯作者:
Wang, HQ
作者机构:
[Wu, Songlin; Li, Xianjun] Cent South Univ Forestry & Technol, Sch Mat Sci & Engn, Changsha 410004, Peoples R China.
[Wang, HQ; Zhao, Jinping; Wang, Hanqing; Li, Chengjun; Xu, Zhaoyang] Cent South Univ Forestry & Technol, Sch Civil Engn, Changsha 410004, Peoples R China.
[Zhao, Jinping; Wang, Hanqing; Li, Xianjun; Li, Chengjun] Hunan Engn Res Ctr Full Life Cycle Energy Efficien, Changsha 410004, Peoples R China.
通讯机构:
[Wang, HQ ] C
Cent South Univ Forestry & Technol, Sch Civil Engn, Changsha 410004, Peoples R China.
语种:
英文
关键词:
Machine learning;Lignocellulosic biomass;Liquefaction;Bio-polyols yield;Hydroxyl value
期刊:
INDUSTRIAL CROPS AND PRODUCTS
ISSN:
0926-6690
年:
2024
卷:
218
基金类别:
National Natural Science Foundation of China [52276094, U1867221, 51876087, 52208137]; Hunan Provincial Innovation Foundation For Postgraduate, China [CX20220725]
机构署名:
本校为第一且通讯机构
院系归属:
材料科学与工程学院
土木工程学院
摘要:
Amid the escalating demand for alternatives to petroleum resources and the imperative to decrease carbon emissions, there is an increasing interest in transforming lignocellulosic biomass into valuable chemicals. This study utilized machine learning models to analyze the acid-catalyzed liquefaction process of lignocellulosic biomass and to predict and characterize the yield and hydroxyl value (HV) of bio-polyols. A total of 612 yield data samples and 229 HV data samples were collected and analyzed. From these data, four machine learning models were constructed: Random Forest (RF), Gradient Boo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com