版权说明 操作指南
首页 > 成果 > 成果详情

构建三种木本油料植物种子含油率NIR通用模型的可行性研究

认领
导出
下载 Link by 中国知网学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
论文标题(英文):
Universal Models for Determining Oil Contents in Three Woody Oil Plant Seeds by Using Near Infrared Spectroscopy: A Feasibility Study
作者:
李水芳;付红军;马强;单杨
作者机构:
[李水芳; 马强] College of Science, Central South University of Forestry & Technology, Changsha, 410004, China
[付红军] College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
[Shan Y.] Hunan Center for Food Detection and Analysis, Changsha, 410025, China
语种:
中文
关键词:
油桐;油茶;核桃;近红外光谱;含油率
关键词(英文):
Camellia oleifera;Juglans regia;Near infrared spectroscopy;Oil content;Vernicia fordiier
期刊:
林产化学与工业
ISSN:
0253-2417
年:
2017
卷:
37
期:
4
页码:
137-142
基金类别:
湖南省教育厅重点项目(14A155);
机构署名:
本校为第一机构
院系归属:
食品科学与工程学院
理学院
摘要:
为了构建湖南常见3种木本油料植物种子含油率近红外光谱通用模型,收集了98个油桐、96个油茶和96个核桃样本,采集了粉碎后种仁的近红外光谱(NIR),测定了样本含油率,分别采用偏最小二乘法(PLS)及径向基神经网络法(RBFNN)建立油桐+油茶+核桃、油桐+油茶、油桐+核桃和油茶+核桃4个混合样本集含油率的NIR通用模型。对PLS模型,4个样本集(验证集)的相关系数(R_p)分别为0.963、0.881、0.965和0.967,预测均方根误差(RMSEP)分别为2.78、3.31、2.47和2.70,相对标准偏差(RSD)分别为4.87%、6.51%、4.03%和4.55%;RBFNN模型的R_p分别为0.958、0.877、0.959和0.966,RMSEP分别为3.34、2.55、...
摘要(英文):
In order to build a universal model of near infrared spectroscopy for determining oil content in three woody oil plant seeds in Hunan, 98 Vernicia fordii seed samples, 96 Camellia oleifera seed samples and 96 Juglans regia seed samples were collected. Near infrared spectra (NIR) of their crushed seed kernel were recorded. Oil content was determined. Partials quare least (PLS) and radical basis function neural networks (RBFNN) were used to develop the universal NIR models for determining oil content for each of 4 sample sets (i. e. V. fordii+C. ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com