版权说明 操作指南
首页 > 成果 > 成果详情

A forest fire smoke detection model combining convolutional neural network and vision transformer

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zheng, Ying;Zhang, Gui;Tan, Sanqing;Yang, Zhigao;Wen, Dongxin;...
通讯作者:
Zhang, G.
作者机构:
[Yang, Zhigao; Wen, Dongxin; Zhang, Gui; Tan, Sanqing; Zheng, Ying; Xiao, Huashun] Cent South Univ Forestry & Technol, Coll Forestry, Changsha, Peoples R China.
通讯机构:
[Zhang, G.] C
College of Forestry, China
语种:
英文
关键词:
forest fire smoke;Detection model;Convolutional Neural Network;vision Transformer;Lightweight model
期刊:
Frontiers in Forests and Global Change
ISSN:
2624-893X
年:
2023
卷:
6
页码:
1136969
基金类别:
This work was funded by the National Natural Science Foundation Project of China (Grant No. 32271879) and the Science and Technology Innovation Platform and Talent Plan Project of Hunan Province (Grant No. 2017TP1022).
机构署名:
本校为第一机构
院系归属:
林学院
摘要:
Forest fires seriously jeopardize forestry resources and endanger people and property. The efficient identification of forest fire smoke, generated from inadequate combustion during the early stage of forest fires, is important for the rapid detection of early forest fires. By combining the Convolutional Neural Network (CNN) and the Lightweight Vision Transformer (Lightweight ViT), this paper proposes a novel forest fire smoke detection model: the SR-Net model that recognizes forest fire smoke from inadequate combustion with satellite remote sensing images. We collect 4,000 satellite remote se...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com