版权说明 操作指南
首页 > 成果 > 成果详情

Minimizing energy consumption of collaborative deployment and task offloading in two-tier UAV edge computing networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Fang, Yixuan;Kuang, Zhufang;Wang, Haobin;Lin, Siyu;Liu, Anfeng
通讯作者:
Fang, YX
作者机构:
[Kuang, Zhufang; Wang, Haobin; Fang, Yixuan] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410004, Peoples R China.
[Lin, Siyu] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China.
[Lin, Siyu] Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China.
[Liu, Anfeng] Cent South Univ, Sch Comp Sci & Engn, Changsha 410010, Peoples R China.
通讯机构:
[Fang, YX ] C
Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410004, Peoples R China.
语种:
英文
关键词:
Multi-Unmanned Aerial Vehicle;Mobile edge computing;Offloading scheduling;Differential evolution;Greedy algorithm
期刊:
Journal of Systems Architecture
ISSN:
1383-7621
年:
2025
卷:
167
页码:
103511
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Multi-Unmanned Aerial Vehicle (UAV)-supported Mobile Edge Computing (MEC) can meet the computational requirements of tasks with high complexity and latency sensitivity to compensate for the lack of computational resources and coverage. In this paper, a multi-user and multi-UAV MEC networks is built as a two-tier UAV system in a task-intensive region where base stations are insufficient, with a centralized top-center UAV and a set of distributed bottom-UAVs providing computing services. The total energy consumption of the system is minimized by jointly optimizing the task offloading decision, 3...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com