版权说明 操作指南
首页 > 成果 > 成果详情

Research on Power Transformer Faults Detection based on Recurrent Neural Network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Shiqi Yin;Xinyi Wen;Jing Han
作者机构:
[Jing Han] College of Science, Central South University of Forestry and Technology, Changsha, China
[Shiqi Yin; Xinyi Wen] Bangor College, Central South University of Forestry and Technology, Changsha, China
语种:
英文
关键词:
Power system;Transformer faults;Detection;Recurrent neural network
年:
2023
页码:
1292-1295
会议名称:
2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST)
会议论文集名称:
2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST)
会议时间:
08 December 2023
会议地点:
Guangzhou, China
出版者:
IEEE
ISBN:
979-8-3503-5774-5
机构署名:
本校为第一机构
院系归属:
班戈学院
理学院
摘要:
At present, power transformer has become an important electrical equipment in existing industrial system. Therefore, the effective analysis method to detect the overheating and other discharge faults can guarantee the continuous process of system. However, existing detection methods concentrate on the analysis of sensors data and ignore the neural network can also achieve the faults detection. In this work, we propose a novel framework to identify the faults in power transformer by applying the neural network. Initially, the sensors data is transformed in the feature space with multiple vector...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com