版权说明 操作指南
首页 > 成果 > 成果详情

DeepFood: Automatic Multi-Class Classification of Food Ingredients Using Deep Learning

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Pan, Lili*;Pouyanfar, Samira;Chen, Hao;Qin, Jiaohua;Chen, Shu-Ching
通讯作者:
Pan, Lili
作者机构:
[Qin, Jiaohua; Pan, Lili] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha, Hunan, Peoples R China.
[Chen, Shu-Ching; Pouyanfar, Samira] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA.
[Chen, Hao] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China.
通讯机构:
[Pan, Lili] C
Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Image classification;Food recognition;Multi-class classification;Deep learning;Feature extraction;Convolutional neural network
期刊:
2017 IEEE 3RD INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC)
年:
2017
页码:
181-189
会议名称:
3rd IEEE International Conference on Collaboration and Internet Computing (CIC)
会议时间:
OCT 15-17, 2017
会议地点:
San Jose, CA
会议主办单位:
[Pan, Lili;Qin, Jiaohua] Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha, Hunan, Peoples R China.^[Pouyanfar, Samira;Chen, Shu-Ching] Florida Int Univ, Sch Comp & Informat Sci, Miami, FL 33199 USA.^[Chen, Hao] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China.
会议赞助商:
IEEE, Univ Pittsburgh, Sch Comp & Informat, Drexel Univ, Coll Comp & Informat, Swinburne Univ Technol, IEEE Comp Soc
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-5386-2565-1
基金类别:
National Natural Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61772561]; Science Research of Hunan Provincial Education Department of China [16C1659]; Teaching Reform Project of Central South University of Forestry and Technology of China [1020208]
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Deep learning has brought a series of breakthroughs in image processing. Specifically, there are significant improvements in the application of food image classification using deep learning techniques. However, very little work has been studied for the classification of food ingredients. Therefore, this paper proposes a new framework, called DeepFood which not only extracts rich and effective features from a dataset of food ingredient images using deep learning but also improves the average accuracy of multi-class classification by applying advanced machine learning techniques. First, a set of...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com