版权说明 操作指南
首页 > 成果 > 成果详情

CNN-AttBiLSTM Mechanism: A DDoS Attack Detection Method Based on Attention Mechanism and CNN-BiLSTM

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Junjie;Liu, Yongmin;Zhang, Qianlei;Zheng, Xinying
通讯作者:
Liu, YM
作者机构:
[Zhao, Junjie; Liu, Yongmin; Zhang, Qianlei; Liu, YM] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410000, Peoples R China.
[Zhao, Junjie; Liu, Yongmin; Zhang, Qianlei; Liu, YM] Cent South Univ Forestry & Technol, Res Ctr Smart Forestry Cloud, Changsha 410000, Peoples R China.
[Zheng, Xinying] Hunan Normal Univ, Business Sch, Changsha 410000, Peoples R China.
通讯机构:
[Liu, YM ] C
Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410000, Peoples R China.
Cent South Univ Forestry & Technol, Res Ctr Smart Forestry Cloud, Changsha 410000, Peoples R China.
语种:
英文
关键词:
DDoS attacks;convolutional neural network;long short-term memory network;self-attention mechanism;feature selection
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2023
卷:
11
页码:
1-1
基金类别:
Liu Yongmin (Grant Number: 2021JJ31163 and XJK20BGD048)
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
DDoS attacks occur frequently. This paper proposes a DDoS attack detection method that integrates self attention mechanism and CNN-BiLSTM to address the problem of low accuracy and high false positive rate in classification tasks due to the high and multiple feature dimensions of raw traffic data. Firstly, the random forest algorithm is combined with Pearson correlation analysis to select important features as model inputs to reduce the redundancy of input data. Secondly, one-dimensional convolutional neural networks and bidirectional long-term and short-term memory networks are used to extrac...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com