版权说明 操作指南
首页 > 成果 > 成果详情

A deep neural network for fashion retrieval based on multi-attention attribute manipulation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Qianyi Liu;Jiaohua Qin;Xuyu Xiang;Yun Tan
通讯作者:
Qin, JH
作者机构:
[Qianyi Liu; Jiaohua Qin; Xuyu Xiang; Yun Tan] College of Computer Science and Information Technology, Central South University of Forestry and Technology, Changsha, 410004, China
通讯机构:
[Qin, JH ] C
Cent South Univ Forestry & Technol, Coll Comp Sci & Informat Technol, Changsha 410004, Peoples R China.
语种:
英文
关键词:
image retrieval;fashion design retrieval;interactive image retrieval;deep neural network;deep learning
期刊:
International Journal of Autonomous and Adaptive Communications Systems
ISSN:
1754-8632
年:
2025
卷:
18
期:
4
页码:
341-356
基金类别:
National Natural Science Foundation of China [62372478]; Natural Science Foundation of Hunan Province [2022JJ31019]
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
The surge in online shopping has heightened the demand for interactive fashion design retrieval. Existing methods, however, exhibit imperfections in attribute segmentation, attributed to the specificity of clothing attributes. The attention region often encounters multiple attributes overlapping, causing changes in one attribute to affect irrelevant ones, resulting in poor retrieval accuracy. This paper addresses this challenge by proposing a deep neural network for fashion retrieval based on multi-attention attribute manipulation. In this approach, the feature extraction module sifts the extr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com