版权说明 操作指南
首页 > 成果 > 成果详情

Automated intelligent detection system for bridge damages with Fractal-features-based improved YOLOv7

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Yongjian;Chen, Xing;Yan, Wenbin
通讯作者:
Yan, WB
作者机构:
[Zhang, Yongjian] Cent South Univ Forestry & Technol, Sch Civil Engn, Changsha 410000, Hunan, Peoples R China.
[Zhang, Yongjian] Hunan Expressway Grp Co Ltd, Changsha 410000, Hunan, Peoples R China.
[Chen, Xing] Hunan Expressway Engn Consulting Co Ltd, Changsha 410000, Hunan, Peoples R China.
[Yan, Wenbin; Yan, WB] Hunan Univ, Coll Elect & Informat Engn, Changsha 410000, Hunan, Peoples R China.
通讯机构:
[Yan, WB ] H
Hunan Univ, Coll Elect & Informat Engn, Changsha 410000, Hunan, Peoples R China.
语种:
英文
关键词:
Bridge engineering;Bridge damages detection;Computer vision;Improved YOLOv7
期刊:
Signal, Image and Video Processing
ISSN:
1863-1703
年:
2025
卷:
19
期:
3
页码:
1-14
机构署名:
本校为第一机构
院系归属:
土木工程学院
摘要:
Timely and effective detection of surface defects on bridges is crucial for ensuring public transportation safety and extending the lifespan of bridges. Traditional bridge defect detection primarily relies on manual inspections, which are highly subjective, inefficient, and exhibit a significant rate of undetected issues. Moreover, there is a lack of effective detection methods for bridges located in special areas, such as large-span canyon bridges. To address these challenges, this study focuses on the Chishi Bridge in Chenzhou, Hunan Province, China, which is the largest multi-tower concrete...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com