版权说明 操作指南
首页 > 成果 > 成果详情

Citrus surface defect identification based on PCS-2D-Otsu and CGWO-DT-SVM

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cai, Chuang;Zhou, Guoxiong;Lu, Chao
通讯作者:
Zhou, GX
作者机构:
[Zhou, Guoxiong; Cai, Chuang; Lu, Chao] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Zhou, GX ] C
Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Citrus fruits;Deep learning;Image segmentation;Learning systems;Textures;2d-otsu;Chaos gray wolf optimizer;Defect identification;DT-SVM;Gray wolves;Optimizers;PCS;Plants cells;Swarm algorithms;Threshold segmentation;Surface defects
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2024
卷:
83
期:
15
页码:
43649-43672
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Aiming at the problems of poor image quality, susceptibility to interference from the external environment and difficulties in recognition due to high similarity between real defects and fruit stalks in citrus surface defect recognition, we proposed a citrus surface defect recognition method based on a combination of PCSA-2D-Otsu and CGWO-DT-SVM. Firstly, a partial differential equations (PDE) based variational model is used to denoise the captured citrus images, which reduces the blurring of the images while retaining the edge details and impo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com