版权说明 操作指南
首页 > 成果 > 成果详情

A structural reliability analysis method under non-parameterized P-box based on double-loop deep learning models

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Hao;Deng, Minya;Sun, Weichuan;Li, Jinwen;Xie, Huichao;...
通讯作者:
Xie, HC
作者机构:
[Hu, Hao; Xie, Huichao; Sun, Weichuan; Deng, Minya] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China.
[Li, Jinwen] Cent South Univ Forestry & Technol, Coll Mech & Intelligent Mfg, Changsha 410004, Peoples R China.
[Li, Jinwen] BYD Co Ltd, Automot Engn Res Inst, Shenzhen 518118, Peoples R China.
[Liu, Haibo] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipment, Xiangtan 411201, Peoples R China.
通讯机构:
[Xie, HC ] C
Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China.
语种:
英文
关键词:
Non-parameterized P-box;Reliability analysis;Deep learning;Adaptive updating;Double-loop surrogate model
期刊:
Structural and Multidisciplinary Optimization
ISSN:
1615-147X
年:
2024
卷:
67
期:
8
页码:
1-19
基金类别:
National Natural Science Foundation of China [52205263]
机构署名:
本校为第一且通讯机构
院系归属:
材料科学与工程学院
摘要:
Structural reliability analysis, when accounting for non-parameterized probability box (P-box) uncertainty, typically entails multiple calls to performance functions and poses significant computational hurdles, largely attributable to its inherently nested double-loop structure. Therefore, this paper proposes a new reliability analysis method tailored for structures with uncertain parameters represented using non-parameterized P-boxes. This method leverages double-loop deep learning models to efficiently calculate both the upper and lower bounds of the failure probability. In the development p...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com