版权说明 操作指南
首页 > 成果 > 成果详情

Exploiting Deep Contrast Feature for Image Retrieval

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Lu, Zhou;Liu, Guang-Hai;Li, Zuoyong;Yang, Lu
通讯作者:
Liu, GH
作者机构:
[Lu, Zhou; Liu, Guang-Hai] Guangxi Normal Univ, Coll Comp Sci & Engn, Guilin 541004, Peoples R China.
[Li, Zuoyong] Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China.
[Yang, Lu] Cent South Univ Forestry & Technol, Informat & Engn Coll, Swan Coll, Changsha 410211, Peoples R China.
通讯机构:
[Liu, GH ] G
Guangxi Normal Univ, Coll Comp Sci & Engn, Guilin 541004, Peoples R China.
语种:
英文
关键词:
Image retrieval;Deep contrast feature;Contrast-based layer;Generalized mean aggregation;Multi-orientational PCA whitening
期刊:
Cognitive Computation
ISSN:
1866-9956
年:
2025
卷:
17
期:
1
页码:
1-15
基金类别:
This study is supported by National Natural Science Foundation of China (grant no. 62266008), the Foundation of Guangxi Normal University (grant no. 2021JC007), and Innovation Project of Guangxi Graduate Education (grant no. YCBZ2024088).
机构署名:
本校为其他机构
院系归属:
涉外学院
摘要:
BackgroundIn the field of content-based image retrieval (CBIR), fused feature-based methods have demonstrated their advanced performance on the popular benchmark datasets. However, it is inevitable increase the vector dimensionality because the fused features have diversity. Therefore, achieving both a low-dimensional representation and high retrieval performance remains challenging.MethodsTo address this problem, an image retrieval method based on the deep contrast-based layer is proposed, namely the deep contrast feature histogram (DCFH), to image retrieval. There are three highlights as fol...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com