版权说明 操作指南
首页 > 成果 > 成果详情

Mining max frequent patterns over data streams based on equal weight clique

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Kuang, Zhufang;Yang, Guogui;Tan, JunShan
通讯作者:
Kuang, Z.(Zfkuangcn@nudt.edu.cn)
作者机构:
[Tan, JunShan; Kuang, Zhufang] School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
[Yang, Guogui] School of Computer, National University of Defense Technology, Changsha, China
语种:
英文
关键词:
Data generation;Data stream;equal weight clique;Experiment data;Frequent pattern mining;High precision;max frequent pattern;Processing time;Pruning strategy;Algorithms;Automation;Data communication systems;Data processing;Graph theory;Problem solving;Data mining
期刊:
Lecture Notes in Electrical Engineering
ISSN:
1876-1100
年:
2012
卷:
173 LNEE
期:
VOL. 2
页码:
155-161
会议名称:
2nd International Conference on Future Control and Automation, ICFCA 2012
会议时间:
1 July 2012 through 2 July 2012
会议地点:
Changsha
ISBN:
9783642310027
机构署名:
本校为第一机构
院系归属:
计算机与信息工程学院
摘要:
Graph theory is introduced to model the problem of frequent pattern mining over data stream. The equal weight clique is proposed in this paper. The problem of mining max frequent pattern is transformed into the problem of solving max equal weight clique. A max frequent pattern mining algorithm EWCFPM which based on equal weight clique is proposed in this paper. In order to decease the processing time, we design pruning strategy. The IBM synthesizes data generation which output customers shopping a data are adopted as experiment data. The EWCFPM...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com