为实现自然环境下蓝莓的精确快速检测,在YOLO v5s的基础上提出了一种结合轻量级网络和注意力机制的改进算法.首先,在主干网络和检测头的位置去除了最大目标检测层的结构,因而降低模型的参数量,增强模型对小目标的检测能力.其次,将MHSA(Multi-head self-attention,多头自注意力)替换了SPPF(Spatial pyramid pooling-fast,快速空间金字塔池化)前面的C3模块,使模型学习到更全面的特征表示,增强模型对蓝莓图像中复杂空间关系和上下文信息的理解能力.最后,在C3模块中加入了S-PSA(Sequential polarized self-attention,顺序极化自注意力),以便模型能够更好地捕捉特征图中相邻区域之间的上下文依赖关系...