版权说明 操作指南
首页 > 成果 > 成果详情

近红外光谱结合化学计量学方法检测蜂蜜产地

认领
导出
下载 Link by 中国知网学术期刊 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
李水芳;单杨;朱向荣;李忠海
通讯作者:
Shan, Y.
作者机构:
[李水芳] College of Science, Central South University of Forestry and Technology, Changsha 410004, China
[李忠海] College of Food Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
[Shan, Yang; 朱向荣] Hunan Food Test and Analysis Center, Changsha 410025, China
通讯机构:
Hunan Food Test and Analysis Center, China
语种:
中文
关键词:
近红外光谱;小波变换;径向基函数神经网络;蜂蜜;产地判别;偏最小二乘-线性判别分析
关键词(英文):
Chemometrics;Classification models;Decomposition level;First derivative;Geographical origins;Honey;Kennard-Stone algorithm;Partial least squares-line discriminant analysis (PLS-LDA);Prediction accuracy;Radical basis function neural networks;Spectral data;Test sets;Training sets;Wavelet function;Discriminant analysis;Food products;Forecasting;Infrared devices;Mathematical transformations;Models;Near infrared spectroscopy;Neural networks;Spectrum analysis;Textiles;Wavelet decomposition
期刊:
农业工程学报
ISSN:
1002-6819
年:
2011
卷:
27
期:
8
页码:
350-354
基金类别:
“十一五”国家科技支撑计划项目(2009BADB9B07);
机构署名:
本校为第一机构
院系归属:
食品科学与工程学院
理学院
摘要:
为了实现蜂蜜产地的快速判别,应用近红外光谱结合化学计量学方法对蜂蜜产地进行了判别分析.kennard-Stone法划分训练集和预测集.光谱用一阶导数加自归一化预处理后,再用小波变换(WT)进行压缩和滤噪.结合滤波后光谱信息,分别用径向基神经网络(RBFNN)和偏最小二乘—线性判别分析(PLS-LDA)建立了苹果蜜产地和油菜蜜产地的判别模型.对不同小波基和分解尺度进行了讨论.对苹果蜜,WT-RBFNN模型和WT-PLS-LDA模型都是小波基为db1、分解尺度为2时的预测精度较好,都为96.2%.对油菜蜜:WT-RBFNN模型在小波基为db4和分解尺度为1时,预测精度较好,为85.7%;WT-PLS-LDA模型在小波基为db9、分解尺度也为1时,预测精...
摘要(英文):
Near infrared spectroscopy combined with chemometrics methods has been used to detect the geographical origin of honey samples. The samples were divided into the training set and the test set by kennard-Stone algorithm. After being pre-treated with first derivative and autoscaling, the spectral data were compressed and de-noised using wavelet transform (WT). The radical basis function neural networks (RBFNN) and partial least squares-line discriminant analysis (PLS-LDA) were applied to develop classification models, respectively. The performances of different wavelet functions and decompositio...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com