版权说明 操作指南
首页 > 成果 > 成果详情

A sentiment-driven three-stage approach for multi-scale carbon price prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yongliang Liu;Chunling Tang;Aiying Zhou;Kai Yang;Huaiyu Yuan
通讯作者:
Chunling Tang<&wdkj&>Huaiyu Yuan
作者机构:
[Yongliang Liu; Chunling Tang; Aiying Zhou; Huaiyu Yuan] School of Economics, Central South University of Forestry and Technology, Changsha, China
[Kai Yang] Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
通讯机构:
[Chunling Tang; Huaiyu Yuan] S
School of Economics, Central South University of Forestry and Technology, Changsha, China<&wdkj&>School of Economics, Central South University of Forestry and Technology, Changsha, China
语种:
英文
关键词:
Carbon trading price forecasting;Sentiment analysis;CEEMDAN;XGBoost;Long short-term memory;Deep learning
期刊:
Discover Sustainability
ISSN:
2662-9984
年:
2025
卷:
6
期:
1
页码:
1-32
基金类别:
This work was supported by the Education Department of Hunan Province (Grant number 24A0208).
机构署名:
本校为第一且通讯机构
院系归属:
经济学院
摘要:
An accurate calculation method of carbon trading price is of great significance to strengthening energy saving and emission reduction. Due to the nonlinear and non-stationary characteristics of the carbon price, it is difficult to predict the carbon price accurately. This paper proposes a new hybrid model for carbon trading price forecasting. The model fuses complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) with extreme gradient boosting (XGBoost) and long short-term memory (LSTM) networks, and leverages SnowNLP to de...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com