版权说明 操作指南
首页 > 成果 > 成果详情

Application of RNN-LSTM in Predicting Drought Patterns in Pakistan: A Pathway to Sustainable Water Resource Management

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Shah, Wilayat;Chen, Junfei;Ullah, Irfan;Shah, Muhammad Haroon
通讯作者:
Ullah, I;Shah, MH
作者机构:
[Shah, Wilayat; Chen, Junfei] Hohai Univ, Business Sch, Nanjing 210098, Peoples R China.
[Ullah, Irfan; Ullah, I] Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China.
[Shah, Muhammad Haroon; Shah, MH] Cent South Univ Forestry & Technol, Bangor Coll, Changsha 410018, Peoples R China.
Nanjing Univ Informat Sci & Technol, Reading Acad, Nanjing 211544, Peoples R China.
通讯机构:
[Ullah, I ] H
[Shah, MH ] C
Hohai Univ, Coll Hydrol & Water Resources, Nanjing 210098, Peoples R China.
Cent South Univ Forestry & Technol, Bangor Coll, Changsha 410018, Peoples R China.
语种:
英文
关键词:
RNN-LSTM;water resources;surface water and groundwater;drought prediction;Pakistan
期刊:
Water
ISSN:
2073-4441
年:
2024
卷:
16
期:
11
页码:
1492-
基金类别:
Conceptualization, W.S. and J.C.; methodology, W.S.; software, W.S.; validation, I.U. (Irfan Ullah 1), M.H.S. and W.S.; formal analysis, I.U. (Irfan Ullah 1) and M.H.S.; investigation, I.U. (Irfan Ullah 1); resources, J.C.; data curation, W.S.; writing—original draft preparation, W.S.; writing—review and editing, I.U. (Irfan Ullah 2), M.H.S. and I.U. (Irfan Ullah 1); visualization, I.U. ((Irfan Ullah 1); supervision, J.C.; project administration, I.U. (Irfan Ullah 1); funding acquisition, I.U. (Irfan Ullah 1). All authors have read and agreed to the published version of the manuscript. This research is financially supported by the National Natural Science Foundation of China Fund for International Scientists under Grant No: 42350410438 and the China Postdoctoral Science Foundation Grant No: 2023M730928.
机构署名:
本校为通讯机构
院系归属:
班戈学院
摘要:
Water is a fundamental and crucial natural resource for human survival. However, the global demand for water is increasing, leading to a subsequent decrease in water availability. This study addresses the critical need for improved water resource forecasting models amidst global water scarcity concerns exacerbated by climate change. This study uses the best weather and water resource forecasting model for sustainable development. Employing a Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) approach, the research enhances drought prediction capabilities by integrating secondary data o...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com