版权说明 操作指南
首页 > 成果 > 成果详情

MFLM-GCN: Multi-relation fusion and latent-relation mining graph convolutional network for entity alignment

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ai, Wei;Liu, Yulu;Wei, Chen;Meng, Tao;Shao, Hongen;...
通讯作者:
Meng, T
作者机构:
[Ai, Wei; Wei, Chen; Meng, Tao; Meng, T; Liu, Yulu] Cent South Univ Forestry & Technol, Coll Comp & Math, Changsha 410004, Hunan, Peoples R China.
[Shao, Hongen] South China Univ Technol, Sch Future Technol, Guangzhou 510641, Guangdong, Peoples R China.
[He, Zhixiong] Cent South Univ Forestry & Technol, Sch Business, Changsha 410004, Hunan, Peoples R China.
[Li, Keqin] SUNY Coll New Paltz, Dept Comp Sci, New Paltz, NY 12561 USA.
通讯机构:
[Meng, T ] C
Cent South Univ Forestry & Technol, Coll Comp & Math, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Entity alignment;Graph convolutional network;Graph random walk;Knowledge graph;Multi-relation
期刊:
Knowledge-Based Systems
ISSN:
0950-7051
年:
2025
卷:
325
页码:
113974
基金类别:
CRediT authorship contribution statement Wei Ai: Writing – original draft, Validation, Supervision, Methodology, Investigation, Conceptualization. Yulu Liu: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Conceptualization. Chen Wei: Writing – review & editing, Validation, Supervision, Project administration. Tao Meng: Writing – review & editing, Supervision, Project administration, acquisition. Hongen Shao: Writing – review & editing, Visualization, Software, Resources, Methodology,
机构署名:
本校为第一且通讯机构
院系归属:
商学院
摘要:
Entity alignment (EA) is the task of identifying equivalent entities in two knowledge graphs (KGs) using a limited set of seed entities. Existing research mainly uses graph neural networks (GNNs) to aggregate entity neighborhood features for representation to achieve better entity alignment. However, most of them ignore the fusion of multiple relations between entities and the mining of latent relations, which limits the effectiveness of entity representation to some extent. Therefore, this paper proposes a novel multi-relation fusion and latent-relation mining graph convolutional network (MFL...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com