版权说明 操作指南
首页 > 成果 > 成果详情

MSCNE:Predict miRNA-Disease Associations Using Neural Network Based on Multi-Source Biological Information

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Han, Genwei;Kuang, Zhufang;Deng, Lei
通讯作者:
Kuang, Zhufang(zfkuangcn@163.com)
作者机构:
[Han, Genwei; Kuang, Zhufang] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410004, Peoples R China.
[Deng, Lei] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China.
语种:
英文
关键词:
Diseases;Correlation;Prediction algorithms;Databases;Feature extraction;Convolutional neural networks;Kernel;miRNA-disease associations;convolutional neural network;extreme learning machine;heterogenous network;environment factor
期刊:
IEEE/ACM Transactions on Computational Biology and Bioinformatics
ISSN:
1545-5963
年:
2022
卷:
19
期:
5
页码:
2926-2937
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62072477, 61309027, 61702562 and 61702561) 10.13039/501100004735-Natural Science Foundation of Hunan Province (Grant Number: 2018JJ3888) Scientific Research Fund of Hunan Provincial Education Department (Grant Number: 18B197) National Key R&D Program of China (Grant Number: 2018YFB1700200) Hunan Key Laboratory of Intelligent Logistics Technology (Grant Number: 2019TP1015)
机构署名:
本校为第一机构
院系归属:
计算机与信息工程学院
摘要:
The important role of microRNA (miRNA) in human diseases has been confirmed by some studies. However, only using biological experiments has greater blindness, leading to higher experimental costs. In this paper a high-efficiency algorithm based on a variety of biological source information and applying a combination of a convolutional neural network (CNN) feature extractor and an extreme learning machine (ELM) classifier is proposed. Specifically, the semantic similarity of diseases, the gaussian interaction profile kernel similarity of the four biological information of miRNA, disease, long n...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com