版权说明 操作指南
首页 > 成果 > 成果详情

Multivariate temperature prediction model based on CNN-BiLSTM and RandomForest

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Bai, Xiangqi;Zhang, Lingtao;Feng, Yanyan;Yan, Haoran;Mi, Quan
通讯作者:
Zhang, LT
作者机构:
[Yan, Haoran; Zhang, Lingtao; Feng, Yanyan; Mi, Quan; Bai, Xiangqi] Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410000, Peoples R China.
通讯机构:
[Zhang, LT ] C
Cent South Univ Forestry & Technol, Sch Comp & Informat Engn, Changsha 410000, Peoples R China.
语种:
英文
关键词:
Temperature prediction;Hybrid model;CNN-BiLSTM;RandomForest
期刊:
JOURNAL OF SUPERCOMPUTING
ISSN:
0920-8542
年:
2025
卷:
81
期:
1
基金类别:
National Natural Science Foundation of China#&#&#62201620#&#&#62201620#&#&#62201620#&#&#62201620#&#&#62201620 Support Program for Longyuan Youth and Fundamental Research Funds for the Universities of Gansu Province#&#&#21B0228#&#&#21B0228#&#&#21B0228#&#&#21B0228#&#&#21B0228 Natural Science Foundation of Tianjin Municipal Science and Technology Commission#&#&#kq2202293#&#&#kq2202293#&#&#kq2202293#&#&#kq2202293#&#&#kq2202293 Fundamental Research Funds for Central Universities of the Central South University#&#&#2021YJ0050#&#&#2021YJ0050#&#&#2021YJ0050#&#&#2021YJ0050#&#&#2021YJ0050
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
摘要:
Temperature fluctuations have profound impacts on both human society and the natural environment. However, the diversity of geographical temperature data and the non-linearity and complexity of meteorological phenomena present significant challenges to accurate prediction. Previous studies in temperature prediction have faced certain limitations, such as inadequate consideration of correlations between multiple meteorological factors in some models or limited modeling capability for non-linear and spatiotemporal relationships. To address these shortcomings, we propose a hybrid model based on C...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com