版权说明 操作指南
首页 > 成果 > 成果详情

Multi-classification prediction of PM2.5 concentration based on improved adaptive boosting rotation forest

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Deng, Tan;Jia, Yingzi;Liu, Ni;Tang, Xiaoyong;Huang, Mingfeng;...
通讯作者:
Liu, N
作者机构:
[Jia, Yingzi; Liu, Wenzheng; Deng, Tan; Huang, Mingfeng; Tang, Xiaoyong] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Peoples R China.
[Liu, N; Liu, Ni] Hunan Univ Technol & Business, Sch Publ Adm & Human Geog, Changsha 410205, Peoples R China.
[Hu, Xinjiang] Cent South Univ Forestry & Technol, Coll Environm Sci & Engn, Changsha 410004, Peoples R China.
[Gu, Yanling] Changsha Univ Sci & Technol, Sch Mat Sci & Engn, Changsha 410114, Peoples R China.
通讯机构:
[Liu, N ] H
Hunan Univ Technol & Business, Sch Publ Adm & Human Geog, Changsha 410205, Peoples R China.
语种:
英文
关键词:
PM2.5 prediction;Rotation forest;AdaBoost;Bayasian optimization
期刊:
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING
ISSN:
2213-2929
年:
2024
卷:
12
期:
6
基金类别:
National Natural Science Founda-tion of China [62402063]; Natural Science Foundation of Hunan Province [2024JJ6067]
机构署名:
本校为其他机构
院系归属:
环境科学与工程学院
摘要:
Developing efficient, stable, and user-friendly methods and technologies for predicting air quality has contributed to environmental research and management. Most traditional machine learning (ML) models often struggle to efficiently process extensive air quality data and grapple with the challenge of imbalanced data distributions. To this end, we introduced a novel multi-strategy collaborative approach that incorporates weighted feature selection, an adaptive enhanced rotation forest algorithm, and Bayesian Optimization for parameter tuning. Moreover, to improve the transparency in black box ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com