版权说明 操作指南
首页 > 成果 > 成果详情

Dynamic variable analysis guided adaptive evolutionary multi-objective scheduling for large-scale workflows in cloud computing

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xia, Yangkun;Luo, Xinran;Yang, Wei;Jin, Ting;Li, Jun;...
通讯作者:
Li, J
作者机构:
[Jin, Ting; Xia, Yangkun; Luo, Xinran] Cent South Univ Forestry & Technol, Sch Logist, Changsha 410004, Peoples R China.
[Yang, Wei] Hunan Univ Informat Technol, Dept Student Affairs, Changsha 410151, Peoples R China.
[Li, Jun; Pan, Lijun; Li, J] Hunan Inst Engn, Sch Management, Xiangtan 411104, Peoples R China.
[Xing, Lining] Xidian Univ, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Peoples R China.
通讯机构:
[Li, J ] H
Hunan Inst Engn, Sch Management, Xiangtan 411104, Peoples R China.
语种:
英文
关键词:
Green computing;Cloud workflow;Large-scale scheduling;Evolutionary algorithm;Multi-objective optimization
期刊:
Swarm and Evolutionary Computation
ISSN:
2210-6502
年:
2024
卷:
90
页码:
101654
基金类别:
Training target for teachers in Ordinary Higher Education Institutions of China; Research Foundation of Hunan Provincial Department, China [23A0209]; Science and Technology Team of Shaanxi Province, China [2023-CX-TD-07]; Program Projects in Shaanxi Province, China [2024GH-ZDXM-48]; Science Research Start Foundation for Bring in Talents of the University of Forestry and Technology, China [2019YJ005]; Science Foundation Project of Hunan Province, China [2024JJ7098]; Student Innovation and Entrepreneurship Program of the Hunan Province, China [S202310538077]; Project of Teaching Reform Research in Ordinary Higher Institutions of Hunan Province, China [HNJG-2022-0127]; R&D Project of Hunan Province, China [2022GK2025]; Provincial Key Laboratory of Intelligent Logistics Technology [2019TP1015]
机构署名:
本校为第一机构
院系归属:
交通运输与物流学院
摘要:
Energy consumption and makespan of workflow execution are two core performance indicators in operating cloud platforms. But, simultaneously optimizing these two indicators encounters various challenges, such as elastic resources, large-scale decision variables, and sophisticated workflow structures. To handle these challenges, we design an adaptive evolutionary scheduling algorithm, namely AESA, with three innovative strategies. First, a heuristic population initialization strategy is devised to gather workflow tasks onto limited potential reso...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com