基于随机抽样的蒙特卡罗方法(MC_RS)由于原理简单、易于实现,常用于电力系统的可靠性评估,但在大规模风电接入,特别是以单个小容量的机组接入的情况下会存在样本容量大、效率低等不足。因此提出使用基于拉丁超立方采样的蒙特卡罗(MC_LHS)方法来解决含风电的电力系统概率可靠性评估问题,此方法由于使用了拉丁超立方采样,能有效地改善样本值对输入随机变量的分布空间的覆盖程度和使用Cholesky分解来降低输入变量之间的相关性系数,从而提高了采样效率、增加收敛速度和提高评估准确度。把提出的MC_LHS方法应用到改进IEEE-RTS79算例中,并与常规MC_RS进行比较,结果验证了该方法的有效性。