版权说明 操作指南
首页 > 成果 > 成果详情

Algorithm of Computer Mainboard Quality Detection for Real-Time Based on QD-YOLO

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Tu, Guangming;Qin, Jiaohua;Xiong, Neal N.
通讯作者:
Jiaohua Qin
作者机构:
[Qin, Jiaohua; Tu, Guangming] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Peoples R China.
[Xiong, Neal N.] Sul Ross State Univ, Dept Comp Sci & Math, Alpine, TX 79832 USA.
通讯机构:
[Jiaohua Qin] C
College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China<&wdkj&>Author to whom correspondence should be addressed.
语种:
英文
关键词:
deep learning;YOLO;composite attention;computer mainboard quality detection;real-time detection
期刊:
Electronics
ISSN:
2079-9292
年:
2022
卷:
11
期:
15
页码:
2424-
基金类别:
Project administration, G.T.; data curation, G.T.; writing—original draft, G.T.; writing—review and editing, J.Q. and N.N.X.; funding acquisition, J.Q. All authors have read and agreed to the published version of the manuscript. This work was funded by the Natural Science Foundation of Hunan Province under Grant (No.2022JJ31019, No.2021JJ31164) and the Soft Science Research Project of Guangdong Digital Government Reform and Construction Expert Committee (No.ZJWKT202204).
机构署名:
本校为第一机构
院系归属:
计算机与信息工程学院
摘要:
Automated industrial quality detection (QD) boosts quality-detection efficiency and reduces costs. However, current quality-detection algorithms have drawbacks such as low efficiency, easily missed detections, and false detections. We propose QD-YOLO, an attention-based method to enhance quality-detection efficiency on computer mainboards. Firstly, we propose a composite attention module for the network’s backbone to highlight appropriate feature channels and improve the feature fusion structure, allowing the network to concentrate on the cruc...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com