通常利用激光点云数据(LiDar)进行树木分类的方法是将点云内插生成数字地形模型(DTM),根据地物高程差值,在图像处理方法的基础上进行分割或分类. 提出一种新的基于对象的LiDar数据树木识别方法,其最大特点是直接利用点云数据的三维空间关系进行分类,不需要将点云转换成二维图像进行处理,避免了转换过程中信息的丢失,提高了分类的精度. 具体实现步骤:首先利用kd-trees组织点云数据,在局部邻域中利用点云位置和法线分别进行协方差分析,估算各点的空间特征变量,然后结合各点的回波次数和局部邻域中点云个数密度作为SVM分类器的输入变量,最后利用基于径向基函数的SVM方法实现点云的分类. 实验结果表...