Plant disease segmentation has achieved significant progress with the help of artificial intelligence. However, deploying high-accuracy segmentation models in resource-limited settings faces three key challenges, as follows: (A) Traditional dense attention mechanisms incur quadratic computational complexity growth (O(n2d)), rendering them ill-suited for low-power hardware. (B) Naturally sparse spatial distributions and large-scale variations in the lesions on leaves necessitate models that concurrently capture long-range dependencies and local ...