版权说明 操作指南
首页 > 成果 > 成果详情

Sparse-MoE-SAM: A Lightweight Framework Integrating MoE and SAM with a Sparse Attention Mechanism for Plant Disease Segmentation in Resource-Constrained Environments

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Benhan Zhao;Xilin Kang;Hao Zhou;Ziyang Shi;Lin Li;...
通讯作者:
Lin Li<&wdkj&>Guoxiong Zhou
作者机构:
[Leheng Li] School of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
[Yulong Wu] Bangor College, Central South University of Forestry and Technology, Changsha 410004, China
[Xilin Kang] School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China
[Benhan Zhao; Hao Zhou; Ziyang Shi; Fangying Wan; Jiangzhang Zhu; Yongming Yan] School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
Authors to whom correspondence should be addressed.
通讯机构:
[Lin Li; Guoxiong Zhou] A
Authors to whom correspondence should be addressed.<&wdkj&>School of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
语种:
英文
关键词:
plant disease segmentation;sparse attention;mixture of experts;SAM (Segment Anything Model)
期刊:
Plants-Basel
ISSN:
2223-7747
年:
2025
页码:
-
机构署名:
本校为第一且通讯机构
院系归属:
林学院
班戈学院
摘要:
Plant disease segmentation has achieved significant progress with the help of artificial intelligence. However, deploying high-accuracy segmentation models in resource-limited settings faces three key challenges, as follows: (A) Traditional dense attention mechanisms incur quadratic computational complexity growth (O(n2d)), rendering them ill-suited for low-power hardware. (B) Naturally sparse spatial distributions and large-scale variations in the lesions on leaves necessitate models that concurrently capture long-range dependencies and local ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com