版权说明 操作指南
首页 > 成果 > 成果详情

Sparse-MoE-SAM: A Lightweight Framework Integrating MoE and SAM with a Sparse Attention Mechanism for Plant Disease Segmentation in Resource-Constrained Environments

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhao, Benhan;Kang, Xilin;Zhou, Hao;Shi, Ziyang;Li, Lin*;...
通讯作者:
Li, Lin;Zhou, GX
作者机构:
[Zhao, Benhan; Zhou, Hao; Yan, Yongming; Li, Lin; Shi, Ziyang; Wan, Fangying; Zhu, Jiangzhang; Zhou, Guoxiong] Cent South Univ Forestry & Technol, Sch Elect Informat & Phys, Changsha 410004, Peoples R China.
[Kang, Xilin] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212100, Peoples R China.
[Li, Leheng] Cent South Univ Forestry & Technol, Sch Forestry, Changsha 410004, Peoples R China.
[Wu, Yulong] Cent South Univ Forestry & Technol, Bangor Coll, Changsha 410004, Peoples R China.
通讯机构:
[Li, L; Zhou, GX ] C
Cent South Univ Forestry & Technol, Sch Elect Informat & Phys, Changsha 410004, Peoples R China.
语种:
英文
关键词:
plant disease segmentation;sparse attention;mixture of experts;SAM (Segment Anything Model)
期刊:
Plants-Basel
ISSN:
2223-7747
年:
2025
卷:
14
期:
17
页码:
-
基金类别:
National Natural Science Foundation in China; Education Department Key Program of Hunan Province [21A0160]; [61902436]
机构署名:
本校为第一且通讯机构
院系归属:
林学院
班戈学院
摘要:
Plant disease segmentation has achieved significant progress with the help of artificial intelligence. However, deploying high-accuracy segmentation models in resource-limited settings faces three key challenges, as follows: (A) Traditional dense attention mechanisms incur quadratic computational complexity growth (O(n2d)), rendering them ill-suited for low-power hardware. (B) Naturally sparse spatial distributions and large-scale variations in the lesions on leaves necessitate models that concurrently capture long-range dependencies and local details. (C) Complex backgrounds and variable ligh...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com