版权说明 操作指南
首页 > 成果 > 成果详情

High-Accuracy Tomato Leaf Disease Image-Text Retrieval Method Utilizing LAFANet

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xu, Jiaxin;Zhou, Hongliang;Hu, Yufan;Xue, Yongfei;Zhou, Guoxiong;...
通讯作者:
Zhou, GX
作者机构:
[Xu, Jiaxin; Li, Jinyang; Dai, Weisi; Hu, Yufan; Xue, Yongfei; Zhou, Guoxiong; Zhou, Hongliang] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Peoples R China.
[Li, Liujun] Univ Idaho, Dept Soil & Water Syst, Moscow, ID 83844 USA.
通讯机构:
[Zhou, GX ] C
Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Peoples R China.
语种:
英文
关键词:
LAFANet;TLDITRD;LFA;FNE-ANS;AR;image-text retrieval;cross-modal
期刊:
Plants-Basel
ISSN:
2223-7747
年:
2024
卷:
13
期:
9
页码:
1176-
基金类别:
Hunan Key Laboratory of Intelligent Logistics Technology#&#&#2019TP1015 Natural Science Foundation of China#&#&#61902436 National Natural Science Fund project#&#&#62276276 Scientific Research Project of Education Department of Hunan Province#&#&#21A0179
机构署名:
本校为通讯机构
院系归属:
计算机与信息工程学院
摘要:
Tomato leaf disease control in the field of smart agriculture urgently requires attention and reinforcement. This paper proposes a method called LAFANet for image-text retrieval, which integrates image and text information for joint analysis of multimodal data, helping agricultural practitioners to provide more comprehensive and in-depth diagnostic evidence to ensure the quality and yield of tomatoes. First, we focus on six common tomato leaf disease images and text descriptions, creating a Tomato Leaf Disease Image-Text Retrieval Dataset (TLDI...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com