版权说明 操作指南
首页 > 成果 > 成果详情

Machine learning-based axial compressive capacity estimation of cold-formed steel build-up sections

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Jiaqiang;Jiang, Liqiang;Hu, Yi;He, Jianguang;Cheng, Xinyuan;...
通讯作者:
Jiang, LQ
作者机构:
[Jiang, Liqiang; Cheng, Xinyuan; Yang, Jianjun; He, Jianguang; Hu, Jiaqiang] Cent South Univ, Sch Civil Engn, Changsha 410004, Peoples R China.
[Jiang, Liqiang; He, Jianguang] Natl Engn Res Ctr High Speed Railway Construct, Changsha 410004, Peoples R China.
[Hu, Yi] Cent South Univ Forestry & Technol, Sch Civil Engn, Changsha 410075, Peoples R China.
通讯机构:
[Jiang, LQ ] C
Cent South Univ, Sch Civil Engn, Changsha 410004, Peoples R China.
Natl Engn Res Ctr High Speed Railway Construct, Changsha 410004, Peoples R China.
语种:
英文
关键词:
Machine learning;Cold-formed steel;Built-up columns;Loading capacity;Robustness
期刊:
THIN-WALLED STRUCTURES
ISSN:
0263-8231
年:
2025
卷:
206
基金类别:
Changtian Foundation for Scientific Research and Development of China Metallurgical Corporation [2023RC3057, XM2023XTGXQ02]; [2022JCYJ12]
机构署名:
本校为其他机构
院系归属:
土木工程学院
摘要:
To consider the highly nonlinear and complex buckling behaviour of various sections of cold-formed steel (CFS) built-up columns, experimental and finite element (FE) methods are commonly used for calculating their axial compressive capacity, although these methods are time-consuming and costly. This paper proposes machine learning (ML) methods to overcome the issues of traditional methods for predicting the maximum axial load capacity (MALC) of CFS built-up columns. A total of 3839 samples from more than 33 different types of sections were collected from 43 published papers, including 817 expe...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com