版权说明 操作指南
首页 > 成果 > 成果详情

PMANet: a time series forecasting model for Chinese stock price prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhu, Wenke;Dai, Weisi;Tang, Chunling;Zhou, Guoxiong;Liu, Zewei;...
通讯作者:
Zhou, GX;Tang, CL
作者机构:
[Zhu, Wenke; Zhao, Yunjing] Cent South Univ Forestry & Technol, Coll Bangor, Changsha 410004, Hunan, Peoples R China.
[Dai, Weisi; Zhou, Guoxiong; Liu, Zewei] Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
[Tang, Chunling] Cent South Univ Forestry & Technol, Coll Econ, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Zhou, GX ; Tang, CL ] C
Cent South Univ Forestry & Technol, Coll Comp & Informat Engn, Changsha 410004, Hunan, Peoples R China.
Cent South Univ Forestry & Technol, Coll Econ, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Deep learning;Informer;Stock price prediction;Time series forecasting model
期刊:
Scientific Reports
ISSN:
2045-2322
年:
2024
卷:
14
期:
1
页码:
18351
基金类别:
Changsha Municipal Natural Science Foundation
机构署名:
本校为第一且通讯机构
院系归属:
计算机与信息工程学院
经济学院
摘要:
Forecasting stock movements is a crucial research endeavor in finance, aiding traders in making informed decisions for enhanced profitability. Utilizing actual stock prices and correlating factors from the Wind platform presents a potent yet intricate forecasting approach. While previous methodologies have explored this avenue, they encounter challenges including limited comprehension of interrelations among stock data elements, diminished accuracy in extensive series, and struggles with anomaly points. This paper introduces an advanced hybrid model for stock price prediction, termed PMANet. P...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com