版权说明 操作指南
首页 > 成果 > 成果详情

Deep stacking l1-norm center configuration convex hull and its application in fault diagnosis of rolling bearing

认领
导出
下载 Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cheng, Zhengyang;Wang, Rongji*
通讯作者:
Wang, Rongji
作者机构:
[Wang, Rongji; Cheng, Zhengyang] Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Hunan, Peoples R China.
通讯机构:
[Wang, Rongji] C
Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Hunan, Peoples R China.
语种:
英文
关键词:
Computational geometry;Failure analysis;Fault detection;Learning algorithms;Pattern recognition;Adaptive pattern recognition;Binary classification;Center configuration;Classification performance;Convex hull;Multi-classification;Objective functions;Rolling bearings;Roller bearings
期刊:
Mechanism and Machine Theory
ISSN:
0094-114X
年:
2020
卷:
143
页码:
103648
基金类别:
This research is supported by the National Natural Science Foundation of China ( 51875183 and 51575168 ) and Key Research and Development Program of Hunan Province ( 2017GK2182 ). This research is supported by the National Natural Science Foundation of China (51875183 and 51575168) and Key Research and Development Program of Hunan Province (2017GK2182).
机构署名:
本校为第一且通讯机构
院系归属:
机电工程学院
摘要:
Maximum margin classifier with flexible convex hulls (MMC-FCH) is an adaptive pattern recognition method based on convex hull vector and shrinkage factor, which can effectively identify different fault states. However, MMC-FCH is a shallow learning algorithm that cannot effectively diagnose complex signals. Meanwhile, MMC-FCH is essentially a binary classifier. For multi-classification, MMC-FCH can only perform multiple binary classifications. To overcome the shortcomings of MMC-FCH, we propose a deep stacking center configuration convex hull ((DSCH)-H-3), which combines the convex hull with t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com