应用数据挖掘技术,对影响林火的因子进行数据分析与综合评估.针对林火这一课题的特殊性与复杂性,采用一种改进的C4.5决策树算法对森林火险天气等级进行评估决策.该算法着眼于从一组互不相关的事例中推算出以决策树为表现形式分类规则,并采用基于可信度阈值的后剪枝技术降低决策树纯度.基于算法原理,综合分析了温度、 湿度、 风力等林火因子数据集,分析了决策树算法应用于数据分类和知识发现的过程和特点,研究了该决策树模型在天气评估中的应用,建立了一套森林火险天气等级评估方法.通过试验表明,林火等级与各林火因子数据集之间建立了有机联系,实现了该算法在林火等级评估方面应用的可能,同时,也...