版权说明 操作指南
首页 > 成果 > 成果详情

A Temporal Self-Organizing Neural Network for Adaptive Sub-sequence Clustering and Case Studies

认领
导出
下载 Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wang, Dong*;Long, Yanfang;Xiao, Zhu;Xiang, Zhiyang;Chen, Wenjie
通讯作者:
Wang, Dong
作者机构:
[Xiang, Zhiyang; Wang, Dong; Xiao, Zhu; Long, Yanfang] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China.
[Chen, Wenjie] Cent South Univ Forestry & Technol, Coll Business, Changsha, Hunan, Peoples R China.
通讯机构:
[Wang, Dong] H
Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Recurrent neural network;sub-sequence clustering;adaptive clustering;self-organizing incremental neural network
期刊:
2016 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS)
ISSN:
2326-2338
年:
2016
页码:
170-174
会议名称:
International Conference on Computer, Information and Telecommunication Systems (CITS)
会议论文集名称:
International Conference on Computer Information and Telecommunication Systems
会议时间:
JUL 06-08, 2016
会议地点:
Kunming, PEOPLES R CHINA
会议主办单位:
[Wang, Dong;Long, Yanfang;Xiao, Zhu;Xiang, Zhiyang] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China.^[Chen, Wenjie] Cent South Univ Forestry & Technol, Coll Business, Changsha, Hunan, Peoples R China.
会议赞助商:
IEEE, IEEE Commun Soc, SCS, Xidian Univ, Yunnan Minzu Univ, State Key Lab
主编:
Obaidat, MS Nicoploitidis, P Hsiao, KF Caballero, DC Li, Z Gao, F Fan, J
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-5090-0690-8
机构署名:
本校为其他机构
院系归属:
商学院
摘要:
Temporal neural networks such as Temporal Kohonen Map (TKM) and Recurrent Self-Organizing Map (RSOM) are popular for their incremental and explicit learning abilities. However, for sub-sequence clustering TKM and RSOM may generate many fragments whose classification membership is hard to decide. Besides they have stability issues in multivariate time series processing because they model the historical neuron activities on each variable independently. To overcome the drawbacks, we propose an adaptive sub-sequence clustering method based on single layered Self-Organizing Incremental Neural Netwo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com